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Abstract

Secure boot and TPM attestation are two important technologies for validating the integrity of a plat-
form. In this thesis, we will evaluate current approaches to validating platform integrity in seL4-based
systems, and develop an approach to integrating hardware-backed secure boot and TPM attestation
into seL4-based systems.

We find that TPM attestation is possible on ARM platforms, a common platform of choice for seL4-
based systems, and demonstrate a system which provides access to a TPM and TPM attestation on ARM
systems for seL4. We also find that there are some flaws with this approach, and conclude by proposing
some designs which take advantage of seL4 to provide better security properties.



Acknowledgements

I would like to thank Ihor Kuz and Ben Leslie for their guidance as supervisors for this project, as well
as Gernot Heiser for his guidance and feedback as assessor. I would also like to thank my Trustworthy
Systems thesis peers and fellow students, for being available to discuss ideas with in the regular student
meetings.

Finally, I would like to thank my family and Julie, for all their support during both my degree and this
thesis.

1



Contents

Acknowledgements 1

Introduction 5
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Application to seL4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Thesis Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Background 8
2.1 Platform Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Booting a System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Evil Maid Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Secure Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Attestation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Cryptographic Hashes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Asymmetric Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Cryptographic Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 UEFI Secure Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Trusted Platform Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Platform Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 TPM Attestation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.3 Remote Attestation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.4 Local Attestation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.5 Storage Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.6 TPM Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Platform Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.1 x86 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.2 ARM Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2



2.5.3 Other Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 seL4 and Microkernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.1 Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.2 CAmkES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.3 seL4 Boot Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 ARM TrustZone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7.1 Secure Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7.2 Secure World Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.8 Secure Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Related Work 28
3.1 Microsoft’s Firmware TPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 HYDRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 SABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Approach 32
4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.1 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2 Targeted Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Implementation 35
5.1 The Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 smc Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 OP-TEE and OP-TEE Supplicant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3.1 OP-TEE Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.2 Secure Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 fTPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 Key Provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.6 Example Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Evaluation 49
6.1 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3 Policy Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3



6.4 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.5 Secure Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.6 Attestation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.7 Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Future Work 52
7.1 Near Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.1.1 Secure Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.2 Far Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.2.1 seL4 as a Trusted OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2.2 seL4 as a Bootloader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Conclusion 55

4



Introduction

1.1 Motivation
The year is 2011— and over 4millionWindows PCs are participating in a large peer-to-peer botnet, with
their users and administrators none the wiser about it [Ars Technica 2011].

This botnet is formed with a unique piece of malware — the Alureon rootkit — which made itself known
for its ability to infect systems by modifying their Master Boot Record (MBR) and running code before
the operating system had a chance to start [Goodin 2010]. This allowed Alureon to easily evade anti-
malware software, which often relies on the operating system to provide its functionality.

Figure 1.1 outlines the structure of traditional malware and traditional rootkits, comparing them to
Alureon. Traditional malware runs alongside normal applications, making it easier to design, but easy
to defend against with operating system-level security features. Rootkits embed themselves in the op-
erating system to avoid detection, but usually run alongside the operating system and thus can be de-
tected or prevented with some clever programming. Alureon is able to circumvent these by running
before the operating system is even loaded.

Such an attack was already theorised by security researchers, but this malware and others like it high-
lighted the importance of protecting a computer before the operating system has a chance to. Our
current best defences against this are secure boot and attestation.

Firmware

OS

Apps Malware

Normal Malware

Firmware

OS Malware

Apps

Rootkit

Firmware

Alureon

OS

Apps

Alureon Bootkit

Figure 1.1: Comparing normal malware, rootkits, and the Alureon bootkit.
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1.1.1 Application to seL4

seL4 is a microkernel, with strong security properties guaranteed by a unique design, small Trusted Com-
puting Base (TCB), and comprehensive formal verification [Klein et. al. 2009]. It is popular in embedded
systems where a high degree of security or reliability is required. However — like all security solutions
— seL4 has a pre-defined scope and is not designed to protect against attacks from outside this scope.
For seL4, examples of some of these out-of-scope attacks would be:

• Physical attacks. For example, an attacker attaching a signal analyser to the memory bus and read-
ing memory transactions.

• Improper setup. For example, having an untrustworthy web server share an address space with an
important storage driver.

• Userspace vulnerabilities. For example, running a publicly accessible database server in userspace
with the password ‘password’.

• Platform attacks. For example, an attacker modifying the boot image to be a malicious version of
seL4.

This last attack vector is the one we are interested in, and is similar to the Alureon rootkit described
above. Although seL4 would prevent malicious software from accessing the hardware in a privileged
way, if the boot image were somehow compromised by a hardware vulnerability or by some limited
physical access, then seL4-based systems would still be vulnerable to these kinds of attacks.

One possible defence would be to boot seL4 directly from Read-Only Memory (ROM). This would success-
fully defend against some platform-based attacks, however:

• There may still be ways to erase and re-program this ROM, depending on how it was made (for
example, if it was Electronically Eraseable Programmable Read-Only Memory).

• There may be ways to boot code from other sources.

• This would make it impossible to upgrade seL4 to enable new features (such as the recently intro-
duced MCS kernel).

• If this approach was chosen by manufacturers for other operating systems (e.g. Linux) it would
be impossible to install seL4 onto these systems.

Secure boot and attestation provide a more flexible and robust defence against platform-based attacks,
and address all of the points listed above.

1.2 Thesis Problem Statement
Secure boot and TPM attestation are two important technologies for validating the integrity of a plat-
form. In this thesis, we will evaluate current approaches to validating platform integrity in seL4-based
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systems, anddevelop an approach to integratinghardware-backed secure boot andTPMattestation into
seL4-based systems. The result will be an seL4-based system protected by secure boot, with a CAmkES
module which allows the userspace to access the TPM and provide local and remote attestation.
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Background

First, we will need to examine some of the technologies and cryptographic primitives required to un-
derstand secure boot and attestation, then we can start to look at how secure boot and attestation work
on a theoretical level and their more common implementations.

2.1 Platform Security
The platform of a system refers to the foundational hardware and firmware that a system runs on. De-
pending on the context, itmay also include someportion of the system’s software stack. Platform security
refers to the security of this platform. In particular, where any weaknesses might exist in this platform,
and mechanisms to protect or validate it.

Vulnerabilities in the platform could be used to compromise a system in spite of many protections
which are applied at a higher level (in the case of Alureon, this was anti-malware software). Therefore,
good defence in depthmeasures need to take steps to ensure that the platform is also secured.

2.1.1 Booting a System

A large responsibility of the platform is to boot the system. Onmodern systems, this will involve several
stages as outlined in Figure 2.2:

1. The firmware will initialise parts of the hardware, and load some lower level drivers and the
bootloader.

2. The bootloader will start to configure and load the operating system. In some systems there may
be multiple stages of bootloaders.

3. The operating system will load some higher level drivers, and the rest of userspace, which the
user will actually interact with.

The user of a modern system will rarely interact with the stages before the operating system. In some
cases theymay never even see or notice them. However, each of thempresents a challenge for platform
security.

8



Firmware

Drivers

Bootloader Bootloaders...

Kernel

Drivers

Userspace

Figure 2.2: Boot Process for Modern Systems

2.1.2 Evil Maid Attack

The evil maid attack is a hypothetical threat model proposed by security researcher Joanna Rutkowska
[Rutkowska 2009] which works based on limited physical access to a system. It describes a situation
where:

1. Someone (the target) is staying at a hotel, and leaves their laptop in their roomwhile they go out.

2. While they are gone, the evil maid enters their room and accesses their laptop.

3. The evil maid boots the laptop’s firmware and installs a new piece of malware to the MBR.

4. The malware runs transparently underneath the operating system, and its only purpose is to
collect passwords and encryption keys.

At this point the system is already compromised, although in the full threat model themaid returns the
next day after the laptop has been used for one night and uninstalls the malware, leaving no traces.

Secure boot and attestation both provide defences against the evil maid attack, and similar attacks target-
ing the platform.

2.1.3 Secure Boot

Secure boot (also occasionally called trusted boot) is a technique for ensuring that only trusted code is
ever booted on a system. To do this, it makes use of cryptographic signatures.

Figure 2.3 outlines the changes to the boot process with secure boot. Each stage of the boot process
checks a cryptographic signature for the next stage against a list of known trusted public keys. If this
signature is invalid or untrusted, that stage of the boot will refuse to boot the next stage. This forms a
chain of trust, in which each stage of the boot has established trust in the next, up to the userspace.

But this poses a question: If a system boots with secure boot, is it secure? Secure boot only produces
a binary output of success or failure, a system either boots or does not boot. If it does boot, there may
still be reasons why it is not secure:

9



Bootloader Bootloader Kernel

Keys

Figure 2.3: A high-level overview of secure boot.

• The private keys used for the cryptographic signatures may have been compromised.

• The system may have been set up deliberately to boot an older and insecure version of an oper-
ating system, which would still have a valid signature.

• Secure boot may have been turned off, either through a software vulnerability or some limited
physical access.

• Theremaybe abug in the secure boot implementation itself (see boothole [Shkatov and Michael 2020]).

Attestation can provide a more flexible solution to platform security.

2.1.4 Attestation

Attestation (also occasionally called measured boot) is a technique for securely measuring the state of a
system’s platform and reporting that to a trusted third party (local or remote). To do this, it makes use
of cryptographic hashes, asymmetric encryption and some secure hardware.

Bootloader Bootloader Kernel

Isolation

Measurements

Figure 2.4: A high-level overview of attestation.

Figure 2.4 outlines the boot process with attestation. Each stage of the boot process computes a cryp-
tographic hash of the code and the configuration for the next stage. These are then stored in secure
storage that is backed by either hardware or firmware to prevent certain kinds of modification. This
also forms a chain of trust as with secure boot, but also produces a trusted measurement of the state of
the system. This measurement can then be sent via asymmetric encryption to a trusted third party to
be verified against some known secure values.
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This is ideal compared to secure boot because even if an attacker could somehow disable these security
measures, they would not be able to fake the produced measurements, and so would not be able to
properly attest the system to a third party verifier.

However, unlike secure boot which can be done entirely within the system it protects and can stop an
insecure system from running in the first place, attestation does require a third party to verify it and
cannot necessarily stop an insecure system from booting.

2.2 Cryptographic Primitives
In order to fully understand how secure boot and attestation work and how they are implemented on
most systems, we need to understand a few of the cryptographic primitives being used.

2.2.1 Cryptographic Hashes

A cryptographic hash function is a function𝐻(𝑥) which takes a sequence of bytes 𝑥 and produces another
fixed-length sequence of bytes called a hash (also called a digest) which “summarises” the input bytes.
Ideal cryptographic hash functions have two properties which we are interested in:

• Given only the hash of a sequence of bytes 𝐻(𝑥), it should be impossible to find the original
sequence of bytes 𝑥 except from by using brute force. In this way, the hash function is said to be
a one-way function.

• Given a sequence of bytes 𝑥 and its hash 𝐻(𝑥), it should be impossible to find another sequence
of bytes 𝑦 such that 𝐻(𝑥) = 𝐻(𝑦). In this case 𝑥 and 𝑦 are said to be colliding. In practice due to
the pigeon hole principle each sequence of bytes has an infinite number of collisions (for instance
in SHA256, there are “only” 2256 possible hash values, but many more possible input sequences),
but it should be computationally difficult to find a useful collision for a given sequence of bytes.

The properties of hash functions are demonstrated in Figure 2.5. An example of a modern, secure cryp-
tographic hash function is SHA256.

2.2.2 Asymmetric Encryption

Asymmetric encryption is a form of encryption where encrypting and decrypting require different keys.
In particular, we have two keys: a public key (usually denoted𝐾+) which is shared publicly, and a private
key (usually denoted 𝐾−) which is kept secret. These two keys are generated in pairs, and can only be
used as that particular pair. With these two keys, we have the following rules:

• If some bytes are encrypted using a public key, they can only be decrypted using the correspond-
ing private key.

• Similarly, if some bytes are encrypted using a private key, they can only be decrypted using the
corresponding public key.
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open("file1");
write(buf);
i = j * k;
return i;

𝐻
bbdfed14fd56b1db
51914e3c46bc0b4f
bd74c2ebb3c1979d
1a10a322d5488649

?

open("file2");
write(buf);
i = j * k;
return i;

𝐻
5104bdc22c7b4022
c1807fa93cfe3b73
337c7ad09b1de359
f3ef6f4a2704ac8a

Figure 2.5: Properties of cryptographic hashes. Top: One we have a hash, it is not possible to find the
original data. Bottom: If the input data changes, the resulting hash changes significantly.

open("file1");
write(buf);
i = j * k;
return i;

𝐾−

89f6bc74ee91deff
a4a4245af07b1f0f
ffa43eb39a47e9af
7e45fcfb9a852806

open("file1");
write(buf);
i = j * k;
return i;

𝐾+

open("file1");
write(buf);
i = j * k;
return i;

𝐾+

89f6bc74ee91deff
a4a4245af07b1f0f
ffa43eb39a47e9af
7e45fcfb9a852806

open("file1");
write(buf);
i = j * k;
return i;

𝐾−

Figure 2.6: Properties of asymmetric encryption. Note the switched use of public and private keys.

As with other encryption, it should be impossible to decrypt data without having the required key (pub-
lic or private).

The properties of asymmetric encryption are demonstrated in Figure 2.6. An example of a modern,
secure asymmetric encryption algorithm is RSA.

2.2.3 Cryptographic Signatures

Cryptographic signatures make use of both cryptographic hashes and asymmetric encryption to be able
to “sign” a blob of data, ensuring that the data is known to be correct and valid by some trusted third
party.

Suppose that person A produces a sequence of bytes theywish to sign. They take that sequence of bytes,
compute the cryptographic hash of that sequence of bytes, and encrypt it with their private key. This
encrypted cryptographic hash is the signature and is distributed with that sequence of bytes.

Person B now wants to verify the integrity of that sequence of bytes. They take the sequence of bytes
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which they received and compute the same cryptographic hash. Then, they take the signature that
was distributed with that sequence of bytes, separately request person A’s public key, and decrypt the
signature. If the cryptographic hashes match, we know that sequence of bytes was definitely produced
by person A and was not modified.

Without a copy of person A’s private key, it would not be possible to modify the sequence of bytes and
produce a signature which is valid when using person A’s public key.

This does introduce some problems:

• We still need to trust person A to give us the correct sequence of bytes. This is particularly im-
portant when person A is only responsible for signing bytes, and not creating them.

• If an attacker steals person A’s private key, they can produce valid signatures for any sequence
of bytes.

• We need a way to securely obtain person A’s public key. If they are both sent over the same
communications channel, an attacker could replace the sequence of bytes, signature and public
key with their own.

2.2.4 Blockchain

These days, whenwe think of theword “blockchain”, we think of cryptocurrency. However, a blockchain
is actually a simpler concept than that, it is a series of blocks of data each linked using a cryptographic
hash.

Each block starts with the hash of the previous block, meaning that modifying any one block will cause
the rest of the blockchain to also be modified. By checking the hash and value of the last block, we
effectively have an ordered cryptographic summary of an entire sequence of blocks.

In some implementations, attestation uses a similar construct to a blockchain to measure the state of
the platform. The properties of blockchains are demonstrated in Figure 2.7.

2.3 UEFI Secure Boot
The Unified Extensible Firmware Interface (UEFI) is a common firmware interface for many x86 systems.
Of particular interest to us, it standardises the most common implementation of secure boot, using
cryptographic signatures [UEFI 2020]. This implementation of secure boot is shown in more depth in
Figure 2.8.

In this implementation of secure boot, any bootable or low-level code (bootloaders, drivers, the op-
erating system) needs to include a trusted signature in order to be booted. To solve the public key
distribution problem, these signatures are verified against keys which are pre-installed onto the sys-
tem at the manufacturing time. Most systems include a copy ofMicrosoft’s public key, but some systems

13



open("file1");
write(buf);
i = j * k;
return i;

0000000000000000
0000000000000000
0000000000000000
0000000000000000

𝐻

fans=ON
backdoor=OFF
secureboot=ON
debug=ON

bbdfed14fd56b1db
51914e3c46bc0b4f
bd74c2ebb3c1979d
1a10a322d5488649

𝐻

KEYS:
6b3a55e0261b
46a9d5bde718
f33ae3bc9a22

fa794b374b824eae
e5c8196b73969d25
5ef176d04204f480
be55b4dd4d1cef58

open("file2");
write(buf);
i = j * k;
return i;

0000000000000000
0000000000000000
0000000000000000
0000000000000000

𝐻

fans=ON
backdoor=OFF
secureboot=ON
debug=ON

5104bdc22c7b4022
c1807fa93cfe3b73
337c7ad09b1de359
f3ef6f4a2704ac8a

𝐻

KEYS:
6b3a55e0261b
46a9d5bde718
f33ae3bc9a22

40006a4f2e37bf63
bf869f161c3d48e7
e2a05cba947208c1
1b91802491d67091

Figure 2.7: Properties of blockchains. If an earlier input changes, the results are seen in the final hash
value.

allow the end users to enrol their own extra public keys under certain circumstances.

2.4 Trusted Platform Module
Attestation requires some form of secure hardware or firmware to work properly. On larger systems,
this comes from a dedicated trusted platformmodule (TPM) such as the one shown in . A TPM is a module
in hardware or firmware which implements an interface standardised by the trusted computing group
(TCG) as part of two separate specifications: TPM 1.2 and TPM 2.0 [TCG 2019].

A TPM might provide any number of useful functions:

• A secure clock, secure counter, and / or secure random number source, all of which can be used
to prevent replay attacks in secure protocols.

• Secure encryption and decryption functionality, so that cryptography can be performed sepa-
rately from the rest of the system.

• Secure key storage, where private keys may be set up to never leave the TPM, or may be set up
to only be used if certain conditions are met.

The feature we are most interested in are the platform configuration registers (PCRs).

Embedded systems may not be able to justify the cost of a discrete hardware TPM and often have their

14



System
open("file1");
write(buf);
i = j * k;
return i;

Booting Code

Hash

bbdfed14fd56b1db
51914e3c46bc0b4f
bd74c2ebb3c1979d
1a10a322d5488649

Compare Hashes

Decrypt

Public Key

89f6bc74ee91deff
a4a4245af07b1f0f
ffa43eb39a47e9af
7e45fcfb9a852806

Signature

Manufacturer
open("file1");
write(buf);
i = j * k;
return i;

Bootable Code

Hash

bbdfed14fd56b1db
51914e3c46bc0b4f
bd74c2ebb3c1979d
1a10a322d5488649

Hash

Encrypt

Private Key

89f6bc74ee91deff
a4a4245af07b1f0f
ffa43eb39a47e9af
7e45fcfb9a852806

Signature

Distributed
with

Code

Figure 2.8: Implementation of secure boot in UEFI. Implementation in other systems will be similar.

own security features implemented. However, there are ways to implement a firmware TPM on some
embedded systems, which we will look at in section 3.1.

2.4.1 Platform Configuration Registers

The platform configuration registers (PCRs) are a special kind of secure storage available on a TPM. In
particular, they can be read at any time, but can only be modified using a special Extend operation:

Extend (𝑃 , 𝑥) ∶ 𝑃 ∶= 𝐻(𝑃 ‖ 𝑥)

This formswhat is effectively a blockchainwithin a given PCR. If one PCR𝑃 hasExtend calledwith values
𝑥1, 𝑥2 and 𝑥3, the resulting value is:

𝑃 = 𝐻(𝐻(𝐻(𝑥1) ‖ 𝑥2) ‖ 𝑥3)

If any one of the 𝑥𝑖 are changed, each of the hashes would change, resulting in a different final value
for the PCR once it gets read.

A TPM normally has several PCRs, each for the code and configuration elements of a different stage
in the boot process. Some are also typically reserved for future use, or available to be used by other
userspace processes. Table 2.1 shows an example PCR allocation for 24 PCRs. Not all TPMs will have
the same number of PCRs, and the allocation may vary depending on the exact platform and software
stack.

Although specific PCR values imply that specific events took place during the boot process, the PCR
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Figure 2.9: A discrete hardware TPM installed on a PCmotherboard. This particular TPM appears to be
a SLB 9635 TT 1.2 from Infineon, implementing the older TPM1.2 standard. Image byWikimedia user FxJ.
Source: https://en.wikipedia.org/wiki/Trusted_Platform_Module#/media/File:TPM_Asus.
jpg

values do not reveal the whole boot process themselves. In order to make understanding the boot
process easier, TPMs may also include a slightly less secured but more verbose event log which lists all
events that are used to extend the PCRs. In this way, if the PCR values are incorrect or unexpected, it is
possible to see why.

Another critical detail about the PCRs is that the values in them are dependent on the order they are
written. For example, if a system once loads 𝑥1, 𝑥2 and 𝑥3 in that order, and then later loads 𝑥1, 𝑥3 and
𝑥2 in that order, the PCR values would not match since:

𝐻(𝐻(𝐻(𝑥1) ‖ 𝑥2) ‖ 𝑥3) ≠ 𝐻(𝐻(𝐻(𝑥1) ‖ 𝑥3) ‖ 𝑥2)

Because of this, great care needs to be taken to initialise the system in a pre-defined order, and no steps
can be parallelised.

2.4.2 TPM Attestation

TPM attestation is an implementation of attestation that uses the hardware / firmware security features
provided by the TPM.

Starting at a small, trusted piece of software referred to as the Core Root of Trust Measurement (CRTM),
each stage of the boot will calculate a cryptographic hash of the code and the configuration of the next
stages of the boot process, and will store these hashes in a PCR.

Once the system has booted into userspace, the PCR values contain a cryptographic summary of the
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PCR Numbers Hashed Contents
0 & 1 BIOS & BIOS configuration
2 & 3 Low-level firmware & associated configuration
4 & 5 MBR & MBR configuration
6 State transitions & wake events
7 Manufacturer specific measurements
8–15 Operating-system specific measurements
16 Debugging information
10 Linux kernel
11 Linux initramfs
12 Linux kernel command line
13 GRUB commands & configuration
14 Secure boot shim keys & state
15 Unused
16 Debug measurements
17–22 Unused
23 Application specific measurements

Table 2.1: An example PCR allocation for Linux on an x86 PC, from [Arthur et. al. 2015].

state of the platform up to that point. To ensure that the correct values of the PCRs can be read by the
third party verifier, the TPM first encrypts them with a private key that is stored securely inside the
TPM. Themanufacturer of the TPM publishes the corresponding public key, and the third party verifier
can then decrypt the PCR values on a trusted system and check them against known good PCR values.

An attacker cannotmodify part of the boot process, as an earlier part of the boot process would extend a
PCRwith a different value, whichwould cause the set of PCRvalues to differ. An attacker also cannot just
modify the operating system’s TPMdriver to return fake PCR values, since the PCR values are encrypted
first using an inaccessible private key. The TPM’s secure clock / counter / random number source can
also be used here to prevent replay attacks.

2.4.3 Remote Attestation

Remote attestation refers to the specific variant of TPM attestation where the trusted third party is an-
other computer accessible via. the network. The encrypted PCR values are then sent to this remote
verifier, which then decrypts them and verifies they are correct.

The remote verifier can then use this information in a number of ways. For example, if the PCR values
are incorrect, it could [Garrett 2019]:

• Prevent that system from accessing the network, or sensitive network resources such as security
cameras or network attached storage.

• Prevent that system from being accessed via. the network, to stop it from impersonating a trusted
host on the network.
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• Notify a system administrator.

However, notably, it cannot stop the system itself from starting unless it has control over that system’s
power supply. It also cannot do any of these things unless there is a connection between it and the
system being verified.

Figure 2.10 shows an overview of how remote attestation works using a TPM. A more detailed descrip-
tion including the precise commands is given later in subsection 2.4.6.

Bootloader Bootloader Kernel Userspace

PCRs Private Key

Public KeyVerifier

System

TPM

Remote

Figure 2.10: A high-level overview of remote attestation.

2.4.4 Local Attestation

Local attestation is also possible using a TPM, in which the trusted third party is a human operator with
physical access to the computer. This works slightly differently to remote attestation and makes use of
a TPM’s data sealing functionality.

A TPM can be asked to keep encrypted data and the corresponding keys in secure storage, and will then
only decrypt and provide this data to the userspace if the PCR values match a known good value that
was set when the data was originally stored. This process is known as sealing data.

Figure 2.11 gives a high-level overview of how local attestation works. Local attestation can be imple-
mented by sealing a small passphrase which can be manually inspected inside the TPM, as is done in
[Constable et. al. 2018]. When the system boots, the system will present the passphrase to the user and
ask them to verify that the passphrase is correct. If any parts of the boot process have been modified,
the TPM will not return the passphrase to the userspace, and the system cannot present the correct
passphrase.

This differs from remote attestation in that it requires a human operator to be physically present when
the system boots, but does not require any kind of remote access to a third party verifier. This would
make it ideal for slightly different use cases, such as air-gapped systems.
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Bootloader Bootloader Kernel Userspace

PCRs Passphrase

Operator

System

TPM

Physical

Figure 2.11: A high-level overview of local attestation.

2.4.5 Storage Hierarchy

To implement any kind of attestation, the TPM needs to store an asymmetric attestation key, which
is used to produce the signatures described above. TPMs are lightweight devices, and have a limited
amount of memory and non-volatile storage. To effectively store keys, TPMs rely on a storage hierarchy
in which keys are derived from other keys.

To begin with, the TPM stores only a primary seed for each hierarchy. This is a large securely generated
randomnumber which never leaves the TPM and never changes. The primary seed we are interested in
is the primary seed for the storage hierarchy, or the storage primary seed. Other hierarchies (endorsement
and platform hierarchies) exist for other TPM use cases.

The storage primary seed is used to generate an asymmetric storage key. Since the storage key is gener-
ated by the fixed storage primary seed, the storage key always has the same public and private compo-
nents and can be considered to be effectively stored inside the TPM.

The storage key is used to securely store and persist objects outside the TPM. When an asymmetric key
is generated in the storage hierarchy of the TPM, the private component is encrypted using the storage
key and returned to the system. In this way, the system cannot read the private component of the
generated key, since it does not have the storage key. When the TPM is restarted, the storage key is
regenerated with the same values, and the system can reload the same generated key.

The attestation key is generated inside the storage hierarchy during provisioning, andmust be provided
to the TPM whenever attestation is required. If a compromised system chooses not to load the correct
attestation key, then the TPM cannot produce a valid attestation. If the attestation key is somehow lost,
then a new one can be generated, but the verifier will also need an updated copy of the public key.

Because TPMs also support other more general cryptographic functions, it is also possible to restrict
generated keys. In the case of an attestation key, it is suggested to:

• Restrict it to only producing signatures, to avoid it being used for general enryption / decryption.
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• Restrict it to only sign TPM generated digests. Otherwise, an attacker could simply request the TPM
to use the attestation key to sign their own, forged attestation.

2.4.6 TPM Commands

In each of the TPM standards set out by the TCG, usage of the TPM is done entirely through commands
and responses. These commands can initialise the TPM, create and manage objects stored on the TPM,
and perform operations on the TPM such as generating an attestation.

As far as the standard attestation process is concerned, there are eight commands we are interested in
[TCG 2019]:

• TPM2_Startup initialises the TPM and must be called before any TPM usage.

• TPM2_Shutdown cleanly shuts down the TPM, optionally preserving some state. This can be used
to shut down the TPM between boot stages while preserving PCR values.

• TPM2_CreatePrimary creates an object directly from a primary seed. For attestation, we can use
this to generate the storage key.

• TPM2_Create creates an object inside a hierarchy and —where appropriate — returns the object
data. For attestation ,we can use this to generate the attestation key during provisioning.

• TPM2_Load loads an object into a hierarchy. For attestation, we can use this to load the generated
attestation key during normal operation.

• TPM2_PCR_Extend extends a PCR with a digest.

• TPM2_PCR_Read reads the value of a PCR.

• TPM2_Quote produces a signed ‘quote’ for some information on the TPM. For attestation, this is
a quote of the PCR values, and is the value we are interested in.

Although TPM2_PCR_Read is not strictly required for attestation, it provides a significant quality-of-life
improvement to the attestation process. The quote structure returned by TPM2_Quote contains a digest
of all selected PCRs. If these values are wrong, it can be difficult to tell which of the PCRs has changed.

Each of these commands have several bytes of parameters and several bytes of information in their re-
sponses, which must be marshalled and unmarshalled by any software using the TPM. Figure 2.12 gives
an example of one of these structures, and Table 2.2 shows the result of unmarshalling this structure.

ff54434780180022000bd31f2da8ab07884d351fe03b49384d5e30626ff03253
a098cb7331b1e305c1d900000000000003f131f0aa6945c32517169e01484e3f
b5d3db225500000001000b0301000000202e0b4afe025424000e0b7edb8ecd9b
f1a40e5609078c5eaeb7c334fb9d36ddc9

Figure 2.12: Example of the raw bytes in a quote response.
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Value Explanation
ff544347 Magic signature (\xffTCG)
8018 Quote type (PCR Quote)
0022 .. c1d9 Name (digest) of signing key
0000 Extra data (none)
0000000003f131f0 Clock value
aa6945c3 Reset counter
2517169e Restart counter
01 Safe flag (the clock value is safe)
484e3fb5d3db2255 Firmware version identifier
00000001 PCR selection count (one)
000b PCR digest algorithm (SHA256)
03010000 Select PCR 0 only
0020 .. ddc9 Digest of selected PCRs

Table 2.2: Unmarshalling the quote response in Figure 2.12. The entire quote structure is signed, and
the signature follows in the full response.

With these commands, we canoutline a concrete process for remote attestation, as adapted from [Chiang 2021].
Parts of this process are shown in Figure 2.13. Firstly, during provisioning:

1. Use TPM2_Startup to initialise the TPM.

2. Use TPM2_CreatePrimary with the storage hierarchy to initialise the storage key.

3. Use TPM2_Create to create the attestation key in the storage hierarchy. Save the returned public
and encrypted private components.

Then, during normal operation of the TPM:

1. Use TPM2_Startup to initialise the TPM.

2. Use TPM2_PCR_Extend several times to measure any required data.

3. Use TPM2_CreatePrimary with the storage hierarchy to initialise the storage key.

4. Use TPM2_Load to load the attestation key’s public and encrypted private components.

5. Use TPM2_PCR_Read to read the measured PCR values (optional).

6. Use TPM2_Quote to generated a signed quote of the PCR values.

7. Repeat TPM2_Quote as many times as required to prevent replay attacks.

In practice, systems will continually generate new quotes. This helps to detect unexpected resets and
changes in the running software, as well as helps to prevent against replay attacks.

Local attestation uses a smaller set of commands, but can still be done using only a TPM. TPM2_Create
can be used to create the sealed ‘passphrase’ in the storage hierarchy, and TPM2_Unseal can be used to
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Figure 2.13: TPM command sequence for provisioning (left) and attestation (right).

unseal the passphrase and provide an attestation.

2.5 Platform Support
Secure boot and TPMattestion are both backed by hardware and firmware security features. Thus, their
support depends on the platform being used. We will consider mainly x86 and ARM systems as a whole,
since their features supported are usually similar.

2.5.1 x86 Systems

x86 systems are typically large desktop, laptop or server machines running powerful Intel and AMD pro-
cessors. seL4 can be used on these systems to provide a secure enclave while virtualising Linux-based
operating systems, but this is a less common use case.

Most x86 systems will be running on a UEFI platform, which will therefore support secure boot. How-
ever, not all x86 systems will allow users to enrol their own secure boot keys. This presents a problem
since often the only key installed by default is Microsoft’s secure boot public key, and Microsoft will
refuse to sign GPL licenced code [Tremblay 2021].

Linux is still able to boot on some of these systems using a UEFI secure boot shim [Debian 2021] — a small
piece of code signed by Microsoft which uses another public key to verify the bootloader and Linux
image.

In some cases, secure boot may need to be turned off entirely to boot other code (i.e. code not signed by
Microsoft) on these systems, which completely disables the protections of secure boot for non-Windows
users.

22



Windows 10 also requires systems to have a TPM installed in order to boot. This means that most mod-
ern x86 systems will include some form or firmware or hardware TPM in order to be able to boot Win-
dows 10.

2.5.2 ARM Systems

ARM systems are typically low-power embedded or mobile devices that could be running processors
or system on chips (SoCs) from a wide range of manufacturers that have licenced ARM’s IP. seL4 is most
commonly used on these systems, as these systems aremost commonly used for embedded applications.

Modern ARM processors include ARM TrustZone, a firmware supported Trusted Execution Environment
(TEE) that provides a variety of security features. The specification for TrustZone is very minimal and
only specifies the trusted execution environment — this on its own is not enough to implement secure
boot or TPM attestation. However, most SoC manufacturers will include secure storage and either a
secure clock, secure random number generator, or secure counter. These features can be used to im-
plement secure boot and attestation.

In particular, in order to runWindows 10 on ARM devices (such as theMicrosoft Surface), Microsoft has
implemented a firmware TPM entirely on ARM TrustZone, with a minimal amount of extra hardware
requirements. This is explored later in section 3.1.

2.5.3 Other Platforms

Other up and coming platforms for seL4 are based on the RISC-V architecture, which shows great
promise as a high-performance, low-power, open source processor architecture. Unfortunately since
RISC-V is still fairly new compared to x86 and ARM, support for secure boot and attestation are still
under active development.

In future it might be possible to revise this thesis and extend the support to RISC-V, as seL4 becomes
more closely associated with RISC-V.

2.6 seL4 and Microkernels
Operating systems can be categorised based on the structure of their kernel — the portion of code that
runs at a privileged execution level and interfaces directly with hardware. Most operating systems
currently use either monolithic kernels (e.g. Linux) that encompass almost all of the operating system’s
functionality, or hybrid kernels (e.g. Darwin, Windows NT) that export some of the operating system’s
functionality to userspace.

Microkernels offer a different design approach, by reducing the size of the kernel asmuch as possible, and
providing most of the operating system’s functionality in userspace. This gives different performance
and design characteristics, but allows for greater security and is ideal for embedded systems.
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seL4 is a third generation microkernel based on the popular L4 family of microkernels. It is currently
the fastest microkernel, and also offers strong security guarantees by means of formal verification. In
2009 after a great research effort, the seL4 microkernel was formally verified [Klein et. al. 2009], this
includes:

• A functional correctness proof that proves the implementation of seL4 is correct to a higher-level
abstract specification.

• A proof of certain properties on top of this high-level specification, to ensure that certain perfor-
mance and security guarantees are met.

• A proof of correct binary translation that ensures the produced machine code matches the be-
haviour modelled by the implementation.

The exact scope of the verification depends on the platform being used, but all platforms can benefit
from seL4’s design for security and performance.

These featuresmake seL4 ideal for embedded applicationswhere a very high level of security is required.
As such, these systems would be a great target for secure boot and attestation to be used with. The task
of providing this level of platform security to seL4 is still an active area of research.

2.6.1 Capabilities

seL4 uses capability-based access control [Trustworthy Systems 2020]. This means that access to objects
provided by the kernel is mediated through capabilities to those objects. Any thread has an associated
capability space (CSpace), and each of the capabilities has an associated set of access rights (read, write,
grant and grant reply). Capabilities can also be copied, or minted / mutated into copies with slightly
weaker access rights. These access rights have different meanings, depending on the kind of object the
capability refers to.

Threads in userspace ask the kernel to act on their behalf by invoking a capability. One capability
may support a number of different operations, which can be selected using parameters to the same
all-powerful seL4_Call system call. The operations available also depend on the kind of object the
capability refers to.

One examplemight be a page object. These are architecture-dependent, but exist in some form on every
architecture to enable memory mapping. Read permissions on a page capability grant the thread the
ability tomap the page as readable, write permissions grant the thread the ability tomap it as writeable.
Invoking the page capability allows the thread to map or unmap the page.

2.6.2 CAmkES

The Component Architecture for microkernel-based Embedded Systems is a framework which is designed to
tackle the complexity of buildingmodular systems on top of seL4. It allows developers to describe a sys-
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tem as a set of components and component interfaces in a high-level language (the Architecture Descrip-
tion Language (ADL)) and then automatically generates the infrastructure to connect these components
with seL4 primitives (capabilities, communication endpoints, etc.).

This means that any userspace modules intended to be used for seL4-based systems would do well to be
defined as CAmkES components, as they can be more easily integrated into existing systems.

2.6.3 seL4 Boot Process

How seL4 boots depends largely on the platform. However, the common theme is that the seL4 micro-
kernel, the root server image (that is, the first userspace thread, which may load more), and a special
program called the ELF loader; are built into one large boot image. The system booting seL4 initially
boots the ELF loader, which loads seL4 and the root server into memory and jumps into seL4. seL4 then
initialises itself and starts the root server.

Figure 2.14 outlines the boot process for seL4. OnARMsystems, the ELF loader is usually started through
U-Boot. U-Boot is a popular open source boot loader for embedded systems, providing drivers for any-
thing necessary to boot the system. This could include power drivers (for system initialisation), storage
drivers (to load images), network drivers (to pull images from the network), and even TPM drivers (for
secure measurements).

U-Boot is split into a secondary program loader (SPL) and tertiary program loader (TPL). The SPL is more
simple, and is only responsible for loading the TPL, which supports more advanced methods of system
initialisation.

U-Boot supports a command line systembefore booting, andboots either according to a preset boot script
or according to commands entered manually over a serial console. These commands can be extended
by vendors and allow developers, administrators and end users to customise their boot process.

U-Boot SPL U-Boot TPL ELF Loader

seL4

Root server

Figure 2.14: A high-level overview of the seL4 boot process, assuming U-Boot is the bootloader.

2.7 ARM TrustZone
ARM TrustZone is a firmware supported means of isolation on modern ARM processors. Figure 2.15
gives an overview of a system running with TrustZone. It separates execution and memory on the
processor into the secure world and normal world. The normal world hosts the familiar operating system
and userspace programs, the secure world can run secure world services (also called trusted applications)
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which are isolated from the normal world. This isolation is backed by a coarse context switch: all memory
is either marked as secure or non-secure, and secure memory can only be accessed in the secure world.

This kind of isolation could be achieved in theory with regular processes. However, because the secure
world is available before the normal world and because it exists concurrently to the normal world, it can
be particularly useful for platform security. Measurements can bemade in the bootloader, stored using
TrustZone, then used from the operating system. TrustZone can also be used to measure parts of the
normal world before they have a chance to boot.

Additionally, onARMplatforms, somehardware can be configured to only be accessible fromTrustZone.
This forms the foundation of the secure storage required to implement a TPM.

Secure Monitor

Normal World Secure World

Kernel

Userspace

Secure OS

Trusted Apps

Figure 2.15: A high-level overview of a system with TrustZone.

2.7.1 Secure Monitor

Underneath any system with TrustZone is the secure monitor. This is a small piece of software which
acts as the aforementioned Core Root of TrustMeasurement (CRTM), andmediates the context switches
between the normal and secure world.

Communication with the secure monitor (and thus context switches between the normal and secure
world) are achieved using the smc instruction. This follows a particular calling convention, in which
parameters to calls to the normal or secure world are placed in the general purpose registers (x0—x7
by default).

One caveat of the smc instruction is that it can only be executed in privileged mode. This is a design
issue for microkernels, as it means that the equivalent of a driver for TrustZone cannot be written
fully in userspace. The only option is to somehow move the smc instruction into the kernel. Since the
secure world can access and change normal world memory, if the secure world is not trusted, the smc
instruction also cannot be trusted.
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2.7.2 Secure World Operating System

On top of the securemonitor, the secureworld has analogues of an operating system and processes. The
secure world operating system is designed to act as an operating system for secure world services (pro-
cesses), mediating their access to hardware and providing simple abstractions for them to use. These
secure world services provide a service which takes advantage of the isolation provided by the secure
world.

The secure world operating system should be as minimal as possible, this makes seL4 a prime candi-
date. However, the current most well-supported secure world operating system is OP-TEE. To ensure a
minimal trusted computing base, OP-TEE is supported in the normal world by a supplicant. This suppli-
cant is used to co-ordinate shared memory between the normal and secure worlds, and to offload any
functionality onto the normal world which can be offloaded. For example, access to the secure storage.

2.8 Secure Storage
Multi-Media Card (MMC) is a storage standard which is aimed at embedded systems. It covers both re-
movable cards (SD/microSD) and embedded cards, which are present as chips on the device. Some
embedded chips will implement a Replay-Protected Memory Block (RPMB), which can be used to provide
a means of secure storage only accessible to the secure world.

The RPMB is available as a special partition with one logical block on the MMC device. RPMB commands
can be issued by writing to this block, and responses received by reading from this block, much like a
special device file on UNIX. The RPMB is equipped with a key during manufacturing or provisioning,
with the idea that this key is only accessible to the RPMB and to the secure world. This key allows
the secure world to read and write to the replay-protected memory via the normal world without the
normal world being able to intercept the requests. Programming this key is a one-time operation.

The key can be restricted to the secure world by a number of means. The simplest is to use re-write the
secure world system to use a proprietary method of generating the key and restrict the source code for
the secure world. While simple, this method relies on security by obscurity. A more secure way is to
take advantage of devices restricted to the secure world and program the RPMB key into an electronic
fuse only accessible to the secure world.
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Related Work

Nowwe can explore some existingworkwhich couldmake our approach easier. In particular, we look at
fTPM— an implementation of a firmware TPM using ARM’s TrustZone [Raj et. al. 2016]; HYDRA— an im-
plementationof a “hybrid”TPMusing seL4 and a small amount of securehardware [Eldefrawy et. al. 2017];
and SABLE—a formally verified bootloaderwhichprovides secure boot and local attestationusing aTPM
[Constable et. al. 2018].

SABLE and HYDRA are both solutions for securely booting and attesting seL4-based systems, with dif-
ferent characteristics. Table 3.3 compares SABLE and HYDRA on a number of key points, which we will
use later to discuss our own approach. fTPM is a different kind of existing work in that it could help us
to design our solution, but is not necessarily a solution by itself.

SABLE HYDRA
Platform Support x86 ARM
Hardware Requirements Discrete TPM None
Secure Boot Support Yes Yes
Attestation Support Local only Local or remote
Attestation Scope Whole platform Userspace
Root of Trust Measurement Dynamic Static
Verification Yes Planned

Table 3.3: Comparison of SABLE and HYDRA.

3.1 Microsoft’s Firmware TPM
As we mentioned before, ARM platforms do not necessarily support secure boot or attestation by hard-
ware or firmware out of the box. Instead, modern ARMSoCswill support ARMTrustZone—usually with
some extra secure hardware to increase the SoC’s security capabilities. In order to securely boot and
supportWindows 10 systems onARMdevicesMicrosoft has developed fTPM—aTPM fully implemented
in software inside ARM TrustZone’s secure world.
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3.1.1 Design Overview

Recall that TrustZone separates the system into a normal and secure world, separated in firmware by
a coarse context switch. Microsoft’s fTPM has two components: a driver that runs in the normal world
and allows the operating system to interface with the fTPM, and the fTPM itself running in the secure
world and implementing the TPM.

The fTPMplaces three extra hardware requirements on the systemoutside of ARM’s TrustZone: a secure
entropy source (that is, an entropy source only available to TrustZone), secure storage, and a number of
hardware fuses— small portions of write-once storage that are written with secure keys duringmanufac-
turing. The secure storage comes in the form of an embedded Multi-Media Card (eMMC) that is equipped
with an RPMB.

Normal World Secure World Hardware

OS

Apps fTPM
Driver

fTPM
Secure

Hardware

Figure 3.16: Overview of fTPM’s Architecture.

3.1.2 Limitations

The biggest limitation of Microsoft’s fTPM is the availability. Primarily, it depends on ARM TrustZone
not only being present on the SoC, but also available for use. Although all modern ARM SoCs do contain
TrustZone by specification, this is usually restricted by the manufacturer for various reasons. In partic-
ular, they may offer their own bespoke security services on top of TrustZone and may not allow these
to be easily modified.

fTPM also makes some small modifications to the semantics of some TPM commands. However, these
commands are still largely the same, and these commands are not ones which are important for attes-
tation or secure boot.

3.2 HYDRA
Hybrid Design for Remote Attestation or HYDRA is a system which implements a kind of “hybrid” TPM
using seL4 and some secure hardware, intended for platforms which do not have the full support for
a hardware or firmware TPM. These would be older or smaller ARM systems, or systems with more
obscure architectures. Thehybrid TPMtakes advantage of the isolation capabilities of seL4 andprovides
a software TPM as a separate seL4 task, which can then be used by remote verifiers or other seL4 tasks
such as a virtualised commodity operating system.
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This is not quite what we are trying to achieve, but it does demonstrate a unique architecture for a TPM
that is only possible with amicrokernel with strong isolation properties such as seL4. In particular, this
is an architecture that was initially proposed by NICTAwhen seL4was first released [Heiser et. al. 2011].

3.2.1 Design Overview

This is a system targeted specifically at remote attestation of a system running on seL4. It makes use of
a higher priority attestation task running alongside the system, and a platform-supported secure boot
to ensure the integrity of seL4 and the attestation task itself. In particular there are no requirements
on the platform outside of this secure boot support.

By running the attestation taskwith ahigher priority than the virtualised system, the virtualised system
can be interrupted and attested to at any time, which is more flexible than normal TPM attestation.
It also places a minimal amount of trust in hardware and firmware solutions, relying on software to
provide isolation and security. This means it cannot defend against some hardware and firmware level
attacks, but alsomeans it is less susceptible to vulnerabilities as it can rely on formally verified software
which can be updated and patched easily.

3.2.2 Limitations

The main limitation of HYDRA is the dependence of platform-level secure boot and the reliance on this
to attest any firmware or the seL4 system itself. The entire attestation program including the private
key is stored un-encrypted on regular storage. If the platform-level secure boot is compromised or
disabled, then an attacker can simply read this storage and leak the private key, allowing them to fake
attestation messages. In this way, the system is only secure and trustworthy if seL4 is securely loaded
by the platform in the first place and can control access to storage. This means it cannot truly replace
a TPM or TPM attestation, although it can provide similar functionality for the userspace system.

3.3 SABLE
The Syracuse Assured Boot Loader Executive or SABLE is a formally-verified secure bootloader, supporting
secure boot and local TPM attestation. It was originally intended for seL4/Genode systems, but is theo-
retically capable of booting any system.

3.3.1 Details

SABLE works in much the same way as a normal bootloader with security features added (e.g. the Grand
Unified Bootloader (GRUB)) in that it takes advantage of the platform’s support for secure boot and what-
ever hardware or firmware TPM exists. However, it is targeted specifically for x86 platforms and as
such relies on whatever firmware TPMs are provided by the processor, as opposed to using fTPM or
some other third-party firmware TPM.
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SABLE is unique in that it specifically makes use of a Dynamic Root of Trust Measurement (DRTM) as op-
posed to a Static Root of Trust Measurement (SRTM) as is typical of TPM attestation. For attestation using
SRTM, the entire platform initialisation starts at the secure Core Root of Trust Measurement (CRTM)
whichmeasures the next stage and establishes a chain of trust across the entire boot process. For attes-
tation using DRTM, once the platform is fully initialised a special CPU instruction can be issued (skinit
for AMD platforms and SENTER for Intel platforms) which effectively clears all CPU state and starts a
new secure loader from which new measurements are taken.

This DRTMmeans that the rest of platform before the secure loader can be ignored and excluded from
the Trusted Computing Base (TCB). Minimising the TCB is a well-established security practice as it makes
it easier to secure what is inside the TCB. However, this relies on the CPU and the platform securely and
reliably clearing its state.

3.3.2 Limitations

The main limitation of SABLE is the amount of platform dependence. Firstly, by relying on hardware
or native firmware TPMs, it restricts itself to platforms which have these. Most importantly however,
the reliance on a DRTM and the platform-specific DRTM instructions means it can only work on plat-
forms which support these instructions. Currently both of these restrictions limit SABLE to modern
commodity x86 platforms.

It also specifically targets the TPM 1.2 standard as opposed to the TPM 2.0 standard. The TPM 2.0 stan-
dard offers improved security guarantees in a number of areas, but is not backwards compatible with
TPM 1.2, and a non-trivial porting effort would be required to make SABLE support TPM 2.0.

Finally, the use of local attestation over remote attestation means that SABLE can only be used to pro-
vide assurance if a human verifier is present. However with the right userspace tools SABLE could be
configured to also provide remote attestation, as it still produces the required TPM measurements.
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Approach

The initial problem statement of introducing secure boot and attestation to seL4-based systems is quite
broad, and the required design will depend highly on the chosen platform and chosen secure boot and
attestation implementations. In particular, it would be impossible to have one general solution for all
platforms.

To start with, before choosing a particular platform or implementation, we will lay out the desired
requirements and design goals for an ideal solution. We then lay out a proposed approach for the im-
plementation.

4.1 Requirements

4.1.1 Design Goals

We begin by choosing some over-arching design goals. These are based heavily on the design goals of
seL4 [Heiser 2020], to ensure the best integration into an seL4-based system.

Requirement 1 (Security) The design should follow the current state of the art in security practices, using as
many of the available security mechanisms as possible in the correct way.

Requirement 2 (Performance) The implemented solution should not cause a significant overhead in the boot
process and should not impede the operation of the system after the boot process unless specifically invoked.

Requirement 3 (Policy Freedom) The design should not require the system running on top of seL4 to adhere
to a particular security policy. Designers of the ‘enduser’ system should be able to freely use theTPMandattestation
facilities in whatever way they see fit.

Requirement 4 (Verification) While full verification is outside the scope of this thesis, the design and imple-
mented solution should at least be amenable to verification, with a strong specification and a relatively small code-
base.

We can now lay out some concrete, high-level requirements for the implementation. These are directly
drawn from the thesis statement, and are independent of the chosen platform (as long as the platform
supports some form of TPM).
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Requirement 5 (Secure Boot) The design should leverage some hardware or firmware functionality to at-
tempt to certify a cryptographic signature for seL4 and the initial task, and should fail to boot if it cannot certify
those signatures.

Requirement 6 (TPM Attestation) The design should leverage a hardware or firmware TPM to provide re-
mote attestation to a trusted remote verifier, through the use of a CAmkES module.

4.1.2 Targeted Platform

The exact nature of the solution depends on the platform chosen, since each platformhas varying levels
of support for secure boot and attestation and different implementations of each.

Since RISC-V does not yet have good support for these technologies, and the problem already seems
solved on x86 platforms by SABLE, we will specifically be targeting ARM platforms. This would be a
good target, as ARM is a popular choice for embedded systems, which is the largest use case for seL4.

Requirement 7 (Chosen Platform) The implementation should work on any ARM platform which supports
some level of secure boot on the firmware and fTPM via. TrustZone.

As we have seen, the choice of ARM introduces a number of challenges. We cannot rely on DRTM as
ARM lacks the appropriate instructions, we need access to TrustZone on whichever SoC is chosen along
with the appropriate secure hardware, and we need some level of support for secure boot from the
underlying firmware.

4.2 Design
We will start by looking at how the existing work relates to the requirements listed above. Table 4.4
lists how each of the existing solutions matches each requirement.

Requirement SABLE HYDRA
Security Yes No (unsuitable TCB)
Performance Unknown Unknown
Policy Freedom No Yes
Verification Yes Planned
Secure Boot Yes Yes
Attestation No (local only) Yes
Platform No (x86 only) Yes

Table 4.4: Evaluation of SABLE and HYDRA against the stated requirements.

As we can see from Table 4.4, neither solution exactly meets our requirements. However, by leverag-
ing fTPM and looking into platform-specific features for secure boot, we may be close to meeting our
requirements. fTPMwill require some effort to port to seL4, and secure bootwill be somewhat platform-
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dependent, but this will fit better into the time constraints of this thesis than adapting any of the other
existing work.

The proposed solution consists of the following stages:

• Investigating support for fTPM, TrustZone and secure boot on the chosen platform.

• Writing drivers to support the secure world operating system and fTPM from within seL4.

• Implementing any userspace software and other utilities to support attestation.

The new boot and attestation process will work like so:

1. The platform’s secure monitor starts in the secure world, initialises fTPM, and measures U-Boot.

2. The secure monitor switches to the normal world and starts U-Boot.

3. U-Boot measures the seL4 image (including the kernel and root server), and boots into seL4.

4. The seL4 root server uses fTPM to generate an attestation to provide to the remote verifier.

This also assumes some provisioning and external utilities, which are also in the scope of this thesis:

• Provisioning the chosen platform with the necessary keys.

• Userspace utilities (e.g., a root server library) to use TPM commands to generate an attestation.

• An external verifier program which is able to verify a generated attestation.

34



Implementation

Due to time constraints and unforseen roadblocks, it was only possible to implement most of the TPM
attestation aspect of this thesis. The implementation can be considered from the ‘bottom-up’ with
regards to TPM attestation:

1. Choosing a suitable platform.

2. Accessing the secure monitor from within seL4.

3. Installing and accessing a secure world operating system (OP-TEE).

4. Implementing the required normal world supplicant for OP-TEE in seL4.

5. Installing and accessing fTPM as a secure world service from within seL4.

6. Provisioning fTPM with the required keys for attestation.

7. Implementing the standard attestation workflow commands within seL4.

8. Implementing an external application for verification.

Many pieces of this implementation exist in some form on some other platform, usually embedded
Linux. Therefore, most of the implementation phase involved understanding and porting these onto
seL4, with some adaptations where necessary. Some cases where documentation is missing or difficult
to find (such as OP-TEE and fTPM) required some imagination and reverse engineering.

5.1 The Platform
The chosen platform was the i.MX8 MQ Evaluation Kit (henceforth referred to as “the i.MX8”), a develop-
ment board based on the i.MX8 MQ applications processor shown in Figure 5.17. This is a platform well
supported by seL4. Importantly for this thesis, it also has a somewhat well-documented boot process,
and support for open source configurations of OP-TEE and fTPM. It also has the secure storage support
required for fTPM, through the embedded MMC card.

35



Figure 5.17: A marketing photo of the i.MX8 MQ Evaluation Kit, with the heatsink removed.
The SoC is in the centre of the board, and the eMMC containing the Replay-Protected Mem-
ory Block (RPMB) is located to the top-left of the board. Image by NXP. Source: https:
//www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/
evaluation-kit-for-the-i-mx-8m-applications-processor:MCIMX8M-EVK

5.2 smc Instruction
On anyARM system that supports TrustZone, the smc instruction can be used to access the secureworld.
Therefore, this is a natural prerequisite for the rest of the system.

Asmentioned in the background section, the smc instruction can only be called from kernel mode. This
means that seL4 has to be modified with an extra capability to allow smc calls.

To implement this thesis, we introduce an extra architecture-specific capability for Aarch64 called
seL4_ARM_SMC. The capability has only one kind of call, seL4_ARM_SMC_SMC. This takes the input reg-
isters for the smc call, makes the smc call, and returns the output registers for the smc call. The input
and output registers are marshalled and unmarshalled into structures by libsel4.

On Aarch64 systems, this capability is placed into the root tasks’s CSpace and the BootInfo structure.
The capability holds no information on the kernel side, and simply represents the ability of a thread
to make an smc call through the kernel. The intended design is that only one or two threads acting as
servers actually have the capability, and that clients wishing to interact with the secure world should
have endpoints to these servers.

smc calls are dangerous, and in a secure system will require some kind of access control. One way to do
this would be to have these access controls implemented somehow in seL4, this would provide better
security guarantees and adhere to the principle of least privilege by only giving userspace threads just
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enough access to the secure world [VanVossen 2021].

However, the arguments to smc calls can be complicated, and may vary in structure depending on the
platform and what is running in the secure world.

For instance, the calling convention specifies that the function ID being called in the secure world
should be placed in x0. In that case, seL4 may choose to filter calls based on the function ID. How-
ever, in the case of OP-TEE, most function calls use the same function ID (OPTEE_SMC_CALL_WITH_ARG
(0x32000004)). The secure world function being called is stored in the shared memory.

To minimise the complexity of the kernel and provide true policy freedom, it is better to have an all-
powerful capability restricted to a minimal amount of threads, and to implement the access controls in
userspace.

One potential issue left to be addressed is long-running operations in the secure world. Some secure
world operations are considered atomic and do not enable interrupts. Others are considered to be in-
terruptable and can be paused and resumed, during which time the system may return to the normal
world.

It is currently not clear to me how this would interact with the seL4 scheduling requirements, par-
ticularly MCS scheduling budgets. In particular, operations in the seL4 kernel are assumed to be short,
which results in a kernel-wide lock. Since these smc calls take place in the kernel, thismay cause system-
wide pauses whenever a long-running secure world operation is started.

5.3 OP-TEE and OP-TEE Supplicant
Before accessing OP-TEE from within seL4, OP-TEE needs to be present on the system. For the i.MX8,
OP-TEE is not installed out of the box, only the secure monitor. The open source OP-TEE repository
[OP-TEE 2021] includes a manifest and Makefile for the i.MX8, this builds OP-TEE, U-Boot, TF-A (the
open source reference secure monitor) and Linux.

The Makefile then produces an image which can be flashed onto a microSD card, which can be booted
from directly on the i.MX8 by selecting the microSD on a hardware switch. This image will boot Linux
by default, however we can modify the included boot script to boot an seL4 image over the network, or
copy an seL4 image onto the microSD itself. The image also ensures that OP-TEE boots first as a secure
world operating system.

Recall that OP-TEE is paired with a supplicant which acts on behalf of OP-TEE in the normal world. This
supplicant is responsible for managing shared memory and for storage requests. For the supplicant,
the Linux drivers are slightly more complex, as the supplicant is in userspace and the driver itself is in
the kernel. For seL4 this can be simplified, as both are in userspace.

From there, drivers are required from within seL4 to access OP-TEE. For the driver for OP-TEE and its
supplicant, these were derived from the Linux drivers. Secure storage requires MMC drivers, which I
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ported from U-Boot. These required some modification to work properly within seL4.

5.3.1 OP-TEE Messages

OP-TEEmessages are sent through the smc instruction. These only use a limited number of the available
registers for the smc calling convention, and pass more information through shared memory objects.
These sharedmemory objects are allocated in the normal world, and are sent by physical address to the
secure world.

OP-TEE shared memory comes in a number of different forms, all of which require slightly different
handling:

• Shared memory can span multiple pages. In this case, the physical address passed to OP-TEE
points to a page containing a list of physical addresses of other pages. This is also to allow support
for non-contiguous memory mappings.

• Shared memory can be allocated on request by OP-TEE, or allocated in advance by the normal
world. For memory allocated in advance — except for memory used to hold arguments — it must
be registered with OP-TEE. This involves making another smc call to OP-TEE which contains the
physical address of the shared memory object.

For all of these shared memory objects, the cache must be invalidated and flushed before and after
using as for any DMA operations. This is because the secure world and normal world share different
mappings.

Currently, these shared memory objects are allocated using a bump pointer for testing purposes. How-
ever, since shared memory is always allocated as whole pages, this could be changed to use a separate
frame allocation library with a proper free list.

The responses are delivered in the same shared memory objects. These responses may indicate success
or an error, and contain some payload. However, in some cases, these responses may be a Remote Proce-
dure Call (RPC) response. This is a way of OP-TEE indicating to the normal world that some action from
the supplicant (e.g. allocation of shared memory, secure storage access) is required before the message
can be addressed. Figure 5.18 is a sequence diagram showing how RPC responses work. Multiple RPC
responses may need to be handled before OP-TEE can handle the original request.

OP-TEE messages that are sent to a secure application are associated with a session. These sessions are
opened using OP-TEE messages themselves, and use a TA’s Universally Unique Identifier (UUID) to select
the TA associated with the session.

Figure 5.19 shows how the fTPM library initialises itself, by opening an OP-TEE session using fTPM’s
UUID. Figure 5.20 and Figure 5.21 show how the fTPM library can send TPM commands, using OP-TEE
messages.
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Figure 5.18: The full process for sending an OP-TEE message, including any intermediate RPC re-
sponses.

5.3.2 Secure Storage

Access to secure storage is highly platform dependent and is likely to be a problem for a small trusted
computing base. Instead, OP-TEE forms platform indepenent Replay-Protected Memory Block (RPMB)
commands in the secure world, and routes these through to the normal world in RPC responses. The
normal world then needs an MMC driver to service these RPMB requests.

In the case of the i.MX8, the seL4 ecosystem already has a similar driver (for the i.MX6). However, U-
Boot already has a driver specifically for the i.MX8, which is more suitable [Denk 2021]. I also ported
the clock driver from U-Boot, as this is required for the MMC driver to work.

Before sending the RPMB requests, some initialisation is required from the MMC driver:

1. The eMMC device itself is re-initialised, to clear any settings left behind by U-Boot. I found that
the device was only partially cleared at the end of the boot process.

2. Some information is requested from the eMMC device. In particular, the Card ID, reliable sector
count, and RPMB partition size. These may be requested by OP-TEE at any time, usually during
initialisation.

3. The eMMCdevice should be switched to the RPMBpartition. If the eMMC is being used for storage
purposes, this will need to happen every time the RPMB is needed.

With this initialisation complete, RPMB requests can be sent and received by reading and writing to
logical blocks on the eMMC device.
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5.4 fTPM
fTPM exists as a trusted application (TA) running on top of OP-TEE. Generally, OP-TEE loads a trusted
application from the file system on request from the normal world. However, in the case of fTPM, we
need it to be available before the normal world has loaded and before a file system is available. We can
do this by building OP-TEE with fTPM included as an early TA. These TAs are linked directly into the
OP-TEE image and are available as soon as the system starts, and more importantly do not require a file
system to be used.

With fTPM linked as an early TA and with OP-TEE messages available in seL4, we have everything we
need to use TPM2 commands. We start in seL4 by opening a session with fTPM. For normal trusted
applications this would load the application into memory, but in the case of fTPM this simply estab-
lishes some statewithinOP-TEE. Thenwe can sendTPMcommands and receive TPMresponseswrapped
within OP-TEE messages. Figure 5.22 shows a snippet of code which interfaces with fTPM from within
seL4.

The code that the fTPM library uses itself to communicate with OP-TEE (in Figure 5.19, Figure 5.20 and
Figure 5.21) is also adapted from U-Boot, with some adjustments for my implementation of the OP-TEE
driver.

5.5 Key Provisioning
For attestation to work, the system needs to be provisioned with an RPMB key and an attestation key,
as well as any primary seeds required by the TPM. The RPMB key can be configured to be written by
OP-TEE automatically if it has not been programmed yet, and fTPM will initialise the primary seeds if
those have not been initialised yet. Provisioning the attestation key must be done manually using the
TPM2_Create command.

Since U-Boot has file system support and all the relevant drivers, we can extend U-Boot’s command
system to include a command for creating an attestation key. This will place the public and private
components in memory, and these can be written to a file on the microSD card for transfer to a remote
computer.

5.6 Example Setup
For the thesis demonstration, and to evaluate this prototype, we have a small example of attestation in
action. This consists of:

• A U-Boot script that pulls a complete seL4 + root server image off TFTP and measures it into PCR
0.
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• An seL4-power serial console diary, which provides the value of PCR 0 as well as a signed quote
of the value in PCR 0.

• A remote verifier, implemented as a web application on a separate computer.

The verifier checks, in order:

1. That the attestation structure is valid and contains a TPM quote.

2. That the PCR digests provided match those in the attestation structure.

3. That the signature is a valid signature for that attestation structure (using an OpenSSL command).

4. That the attestation structure has a safe clock value.

5. That no previous valid attestation attempts have the same or higher clock values. This means
checking the clock, reset and restart values.

If these checks pass, the verifier adds this attestation attempt to the history of valid attestation at-
tempts.

If an attacker manages to hack the TFTP server, they can replace the seL4 image. However, U-Boot
and OP-TEE are both written on the microSD card, so these are not compromised. For the example, we
consider three different situations:

1. The diary image is not compromised. (Figure 5.23)

2. An attacker replaces seL4 with ‘eL4’ — a version of seL4 with worse security guarantees than seL4.
The root server image is unchanged. (Figure 5.24)

3. As above, but the attacker replaces the root server image with one that returns a hardcoded,
known good PCR value and quote. (Figure 5.25)

In the first case, the verifier application will in fact successfully verify the attestation. However, the
PCR value is clearly different. This presents a practical drawback of TPM attestation. If a PCR value
changes, it can be difficult to know if this is from an attack, or simply a system update (for example).
For this example setup, we place the responsibility of checking the PCR on the end user.

In the second case, there are two possibilities. If the verifier application has seen a quote previously
with a later clock value than the hard-coded quote, the hard-coded quote fails to verify as the clock
values are considered to be in the past. If the verifier application has not seen a quote previously with a
later clock value than the hard-coded quote, the diary application is configured to re-generate the quote
on pressing @. If the quote is hard-coded, the same quote will be produced, and the verifier application
will detect that the same clock value has been used twice.
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#include <optee.h>

static struct {
uint32_t session;
struct optee_shm* shm;
uint8_t resp[PAGE_SIZE];

} ftpm_state;

int ftpm_init(void)
{

struct optee_open_session_arg arg;
memset(&arg, sizeof(arg), 0);

/* Copy in fTPM's UUID */
const uint8_t ftpm_uuid[16] = {

0xbc, 0x50, 0xd9, 0x71,
0xd4, 0xc9, 0x42, 0xc4,
0x82, 0xcb, 0x34, 0x3f,
0xb7, 0xf3, 0x78, 0x96

};
memcpy(arg.uuid, ftpm_uuid , 16);

/* Unused parameters */
arg.clnt_login = 0;
arg.num_params = 0;

int rc = optee_session(&arg, NULL);
assert(rc); // Assert no OP-TEE errors

assert(arg.ret == 0); // Assert no fTPM error

ftpm_state.session = arg.session;

/* This is used for requests and responses */
/* The arguments here are:

reg = TRUE - Register this memory with OP-TEE
pl = TRUE - Use a page list as this memory may use

non-contiguous pages */
ftpm_state.shm = optee_shm_alloc(PAGE_SIZE * 2, TRUE, TRUE);

return 1;
}

Figure 5.19: A simplified version of the code used to open an fTPM session with OP-TEE.
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#include <optee.h>

static struct {
uint32_t session;
struct optee_shm* shm;
uint8_t resp[PAGE_SIZE];

} ftpm_state;

struct tpm_header {
uint16_t tag;
uint32_t length;
union {

uint32_t ordinal;
uint32_t return_code;

};
} __attribute__((packed));

/* Swap for endianness */
static uint32_t swap_32(uint32_t i);

int ftpm_command(uint8_t* input_buf , uint8_t* output_buf ,
size_t input_length , size_t output_length)

{
struct optee_invoke_arg arg;
memset(&arg, sizeof(arg), 0);

arg.func = 0;
arg.session = ftpm_state.session;
arg.num_params = 4;

struct optee_msg_param params[4];
memset(&params , 4 * sizeof(struct optee_msg_param), 0);

/* First parameter , the input buffer */
params[0].attr = 0x5; // Registered memory input
params[0].u.rmem.shm_ref = (uint64_t) ftpm_state.shm;
params[0].u.rmem.size = input_length;
params[0].u.rmem.offs = 0;

uint8_t* shm_buf = (uint8_t*) ftpm_state.shm->vaddr;
memset(shm_buf , 2 * PAGE_SIZE , 0);

/* Copy input buffer into shared memory */
assert(input_length < PAGE_SIZE);
memcpy(shm_buf , input_buf , input_length);

optee_shm_clean_invalidate(ftpm_state.shm);

Figure 5.20: A simplified version of the code used to send TPM commands as OP-TEEmessages to fTPM.
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/* Second parameter , the output buffer */
params[1].attr = 0x7; // Registered memory input/output
params[1].u.rmem.shm_ref = (uint64_t) ftpm_state.shm;
params[1].u.rmem.size = PAGE_SIZE;
params[1].u.rmem.offs = PAGE_SIZE;

int rc = optee_invoke(&arg, params);
assert(rc); // Assert no OP-TEE errors

optee_shm_clean_invalidate(ftpm_state.shm);

assert(arg.ret == 0); // Assert no fTPM errors

uint8_t* tmp_buf = ftpm_state.shm->vaddr + params[1].u.rmem.offs;
struct tpm_header* tpm_hdr = (struct tpm_header*) tmp_buf;
size_t tmp_len = swap_32(tpm_hdr ->length);

assert(tmp_len > output_length); // Ensure we have enough space

/* Copy output buffer from shared memory */
memset(output_buf , output_length , 0);
memcpy(output_buf , tmp_buf , output_length);

return 1;
}

Figure 5.21: A simplified version of the code used to send TPM commands as OP-TEEmessages to fTPM
(Continued from Figure 5.20).
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#include <ftpm.h>
#include <optee.h>

/* Swaps the endianness , as the TPM and Aarch64 use */
/* different endianness */
static uint16_t swap_16(uint16_t i);
static uint32_t swap_32(uint32_t i);

/* Generate 32 random bytes , and copy to 'random' */
void example(uint8_t* random)
{

/* Initialise OP-TEE, and give it an address to start */
/* allocating shared memory from */
optee_shm_init(0xa0000000);

/* Initialise fTPM */
int rc = ftpm_init();
assert(rc); // Assert no initialisation errors

/* Prepare the TPM request */
struct __attribute__((__packed__)) {

uint16_t tag;
uint32_t length;
uint32_t code;

} tpm_header_req;

tpm_header_req.tag = swap_16(0x8001); // No sessions
tpm_header_req.length = swap_32(12); // 10 byte header

// + 2 byte parameter
tpm_header_req.code = swap_16(0x017b); // TPM2_GetRandom

struct __attribute__((__packed__)) {
uint16_t bytes;

} tpm_getrandom_req;

tpm_getrandom_req.bytes = swap_16(32); // Request 32 bytes

uint8_t request[12]; // 10 byte header + 2 byte parameter
uint8_t response[42]; // 10 byte header + 32 byte response
memcpy(request , &tpm_header_req , sizeof(tpm_header_req));
memcpy(request + sizeof(tpm_header_req), &tpm_getrandom_req ,

sizeof(tpm_getrandom_req));

rc = ftpm_command(request , response , 12, 42);
assert(rc); // Assert no OP-TEE errors

/* Unmarshall the response */
struct __attribute__((__packed__)) {

uint16_t tag;
uint32_t length;
uint32_t code;

} tpm_header_res;

memcpy(&tpm_header_res , response , sizeof(tpm_header_res));
tpm_header_res.code = swap_32(tpm_header_res.code);
assert(tpm_header_res.code == 0); // Assert no TPM errors

memcpy(random , response + sizeof(tpm_header_res), 32);
}

Figure 5.22: Using fTPM from within seL4 as a userspace library. This implements a function which
initialises fTPM and OP-TEE, then uses TPM2_GetRandom to fetch 32 random bytes.
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Figure 5.23: The known good version of the diary, and the result of entering the details into the veri-
fication application.
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Figure 5.24: The compromised version of the diary. Note that the PCR digest has changed.
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Figure 5.25: A version of the diary implementing a replay attack. The PCR digest looks good, but the
verification application realises it has seen newer clock values.
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Evaluation

With a system using fTPM on top of seL4, as well as the example use case from the thesis demonstration,
we can now compare the solution against the requirements detailed earlier.

6.1 Security
The security requirement is stated as: The design should follow the current state of the art in security practices,
using as many of the available security mechanisms as possible in the correct way.

For theparts of the designwhichhave been implemented, this has been followed. The latest open source
versions of fTPM and OP-TEE are used, fTPM implements as closely as possible the TPM 2.0 standard
which is at the time of writing the most recent. The full access to the TPM means that the user can
choose the algorithms being used in their TPM command parameters, however in the example setup
only secure algorithms are being used (SHA256, 2048-bit RSA).

The only place where the current setup falls short is that there is no way to program the RPMB key into
a secure fuse, instead the default derived OP-TEE key is used, which can be calculated from information
read from the eMMC’s manufacturing registers.

6.2 Performance
The performance requirement is stated as: The implemented solution should not cause a significant overhead
in the boot process and should not impede the operation of the system after the boot process unless specifically
invoked.

The overhead in the boot process was never measured, although we know from fTPM’s paper that
a firmware TPM is generally faster than a discrete TPM, since it ultimately runs on the main CPU
[Raj et. al. 2016]. More importantly however, since fTPM and the secure world can only be passively
invoked from the smc instruction (when only using fTPM) this solution should not impede the oper-
ation of the system after the boot process unless specifically invoked, and thus the latter half of this
requirement is met.
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However, we cannot make any serious claims about performance without doing a proper benchmark.
Since there are no benchmarks of this particular solution, this requirement can only be considered
partially met.

6.3 Policy Freedom
The policy freedom requirement is stated as: The design should not require the system running on top of seL4
to adhere to a particular security policy. Designers of the ‘end user’ system should be able to freely use the TPM
and attestation facilities in whatever way they see fit.

Since fTPM support is fully implemented, the root server (and any other server with the smc capability)
is free to usewhichever TPMcommands they like. This can beused to implement other security systems,
or to make variations on the standard attestation process. Thus as far as the TPM is concerned, this
requirement is met.

6.4 Verification
The verification requirement is stated as: While full verification is outside the scope of this thesis, the design
and implemented solution should at least be amenable to verification, with a strong specification and relatively
small codebase.

The nature of this solution makes this difficult to achieve. The largest targets for verification here are
OP-TEE and fTPM. OP-TEE can in theory be replaced with seL4 in the long run, removing the need to
verify it. However, the TPM specification is quite large and complicated, although it includes a full
reference implementation.

The smc kernel object is difficult to verify without making strict assumptions about the secure world
and any services running on top of it, and thus this solution may never be suitable for verification.

6.5 Secure Boot
The secure boot requirement is stated as: The design should leverage some hardware or firmware functionality
to attempt to certify a cryptographic signature for seL4 and the initial task, and should fail to boot if it cannot certify
those signatures.

As secure boot was not part of the final implementation nor part of the example system, this require-
ment is not met.
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6.6 Attestation
The attestation requirement is stated as: The design should leverage a hardware or firmware TPM to provide
remote attestation to a trusted remote verifier, through the use of a CAmkES module.

Besides not using a CAmkES module, the example system demonstrates this requirement exactly, with
an attestation being verified remotely over a serial connection.

6.7 Platform
The platform requirement is stated as: The implementation should work on any ARM platformwhich supports
some level of secure boot on the firmware and fTPM via. TrustZone.

Most of the drivers used for the implementation would be platform independent. The exception is
the MMC driver, however this follows a standard interface (the RPMB commands). Thus, to port this
implementation to another system, one would only need to check for support for fTPM and provide an
MMC driver capable of issuing MMC commands. This requirement is met.

6.8 Summary

Requirement Met?
Security Mostly
Performance Somewhat
Policy Freedom Yes
Verification No
Secure Boot No
Attestation Mostly
Platform Yes

Table 6.5: Summary of requirements met.

Table 6.5 summarises the degree to which each requirement is met. Four out of seven requirements
are at least mostly met, and with some future work it should be possible to meet all requirements by
building off this design. Only verification would not be possible to achieve with this design, due to
fundamental problems with the smc instruction.
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Future Work

We will now look at some work for the future: what work would be needed to consider this thesis truly
complete, and with the benefit of hindsight some interesting alternative designs.

7.1 Near Future
For the near future, there are some small usability changes to bemade to the source code. This includes
packaging the libraries as CAmkES modules, and de-coupling the MMC driver, memory allocation, etc.
However, the main aspect missing from the solution is secure boot support.

7.1.1 Secure Boot

Although attestation provides similar functionality to secure boot, an ideal systemwould support some
combination of both. Although each stage of the boot process has some support for secure boot, this
was never fully looked into. The only difference secure boot should have for seL4 is the quirk that the
seL4 image has to be verified in two separate pieces: the kernel and ELF loader, and the root server
image. This is because the root server image would likely be signed with a different key (or not at all)
to the kernel and ELF loader. Since the way the image is generated depends on the platform, this could
require some modifications to U-Boot such as a custom command.

To truly get secure boot working on ARM in the spirit of seL4 and verified software, it would be ideal to
port a verified bootloader such as SABLE, however this would require complex changes to the way that
SABLE works.

7.2 Far Future
For the far future, during this thesis we have identified some fundamental problems with the approach.
These are some different approaches tailored to seL4 which can help address these problems, although
they would require relatively more work.
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7.2.1 seL4 as a Trusted OS

An ideal secure world operating system should be small enough to fit into secure memory, have strong
security guarantees, and a small trusted computing base. This makes seL4 an ideal choice for running
as a trusted operating system, and doing so has been proposed before in the seL4 community.

This means that, with a number of other secure world services, seL4 could be configured to replace
OP-TEE as the underlying secure world operating system for fTPM as shown in Figure 7.26. This could
even evolve into a multikernel-style solution, in which the normal world and secure world kernel are
aware of each other’s protections, and there are some guarantees that secureworld applications cannot
interfere with the normal world in unwanted ways.

Such a system is the only real way to make the smc instruction compatible with verification, assuming
that the secure monitor is trusted that seL4 is in fact being used in both the normal and secure world.

Secure Monitor

seL4 seL4

Apps Suppl. fTPM Utils.

Figure 7.26: How seL4 can work as both a normal-world OS and a secure-world OS, in this case running
fTPM in the secure world.

7.2.2 seL4 as a Bootloader

Themainmotivation behind using TrustZone at all for attestation is that, in a normal system, TrustZone
boots before seL4 and can provide isolation before seL4. However, if seL4 was used as a bootloader,
seL4 would be able to provide it’s own isolation early in the platform initialisation process. This would
significantly reduce the reliance on TrustZone. Such a system could also help reduce the security issues
faced by bootloaders, by offloading some parts of the boot process into isolated userspace processes.

This would require some modification of seL4, to support a ‘boot capability’ granted to the root server,
as shown in Figure 7.27. This boot capability, when invoked by a thread, would:

1. Unmap all pages except for the pages owned by this thread. Boot images, etc. would need to be
copied into this ‘booting thread’.

2. Jump to a given address in kernel mode, this address must be mapped in this thread.
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seL4

Utils. Boot

Boot Cap.

Main OS

Figure 7.27: How seL4 can be reconfigured to support a bootloader.
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Conclusion

To conclude, we have designed and implemented a system which supports attestation on ARM systems
using fTPM. While not implementing it in the design, we also speculate that secure boot is compatible
with this design. There are however some fundamental issues with the design, and some other areas
that could be improved.

When it comes to seL4, while secure boot and TPMattestation are viablemeans of providing platform se-
curity, it could be the case that a fundamentally different approach is better suited. This is particularly
evident with fTPM and TrustZone, where it is difficult to justify having an isolated ‘secure’ environ-
ment running on an operating system with less security guarantees than seL4. Additionally, we are left
wondering whywe cannot bring seL4 into the boot process earlier, and rely on software-based isolation
earlier in the boot process as opposed to hardware or firmware isolation.
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